10 Septembre 2020.
Chili , Copahue :
37,856 ° S, 71,183 ° O
Altitude: 2953 m
Le SERNAGEOMIN a signalé une activité continue sur le Copahue du 16 au 31 août. Les webcams ont enregistré des panaches de gaz et de cendres s’élevant jusqu’à 1,7 km, parfois associés à une incandescence nocturne du cratère. Les panaches ont dérivé dans plusieurs directions jusqu’à 4,3 km vers le Nord , 9 km vers le Nord -Est, 8 km vers l’Est, 4 km vers le Sud -Est, 4 km vers le Sud -Ouest, 9 km vers l’Ouest et 4,4 km vers le Nord -Est. Les émissions de dioxyde de soufre étaient élevées, atteignant en moyenne 2 641 tonnes par jour (entre 2 029 et 3 253 tonnes par jour), avec une valeur élevée de 4 627 le 27 août. Le niveau d’alerte est resté au jaune (le deuxième niveau le plus bas sur une échelle à quatre couleurs). L’ONEMI a maintenu l’alerte jaune (le niveau intermédiaire sur une échelle de trois couleurs) pour les résidents de la municipalité d’Alto Biobío et l’accès à une zone à moins de 1 km du cratère El Agrio a été restreint au public.
Au cours de la période évaluée, la sismicité de type volcano-tectonique (VT) est restée stable par rapport à la période précédente, restant à des valeurs considérées comme faibles pour ce volcan.
L’événement d’énergie la plus élevée avait une magnitude locale (ML) de 2,0 et était situé à 4,4 km au Nord (N) du cratère à une profondeur de 2,2 km.
La sismicité associée au mouvement des fluides à l’intérieur du volcan (types LP et TR) a montré une augmentation par rapport à la période précédente, à la fois dans le nombre d’événements et dans l’énergie libérée.
Il a également été possible d’observer une continuité dans le signal de tremor continu, qui présentait des variations oscillantes tout au long de la période, tant en contenu spectral qu’en amplitude, probablement liées à l’activité de surface dans le cratère.
L’occurrence de 133 événements d’activité explosive discrète (EX) se démarque, comme en témoigne l’activité de surface montrée par le volcan.
Les images fournies par les caméras IP ont permis d’observer une colonne quasi constante de dégazage et de particules, qui a atteint une hauteur maximale de 1680 m au-dessus du cratère.
De plus, pendant plusieurs nuits, il a été possible d’observer une intense activité incandescente, associée à l’activité de surface dans le cratère.
Au total, dix (10) anomalies satellitaires d’émissions de dioxyde de soufre (SO2) ont été signalées pour la période.
Une alerte thermique associée au cratère a été enregistrée le 21 août, en utilisant le traitement d’image Sentinel 2-L2A.
Les émissions de SO2 enregistrées en surface par les stations DOAS ont montré des valeurs moyennes de 2641 tonnes / jour avec une valeur maximale de 4627 tonnes / jour le 27 août, une valeur jugée élevée pour ce volcan.
Source : GVP , Segemar.
Photo : Dario G. Lazo , clarin.com .
Iles Salomon , Kavachi :
8,991 ° S, 157,979 ° E
Altitude : -20 m
Les données satellitaires ont montré une eau décolorée autour du Kavachi, peut-être début septembre; le 7 septembre, des panaches décolorés dans l’eau étaient visibles à l’Est du cône sous-marin.
Nommé d’après un dieu de la mer des peuples Gatokae et Vangunu, Kavachi est l’un des volcans sous-marins les plus actifs du Sud-Ouest du Pacifique, situé dans les îles Salomon au Sud de l’île de Vangunu à environ 30 km au Nord du site de subduction de la plaque Indo-australienne sous la plaque Pacific. Parfois appelé Rejo te Kvachi (« Four de Kavachi »), ce volcan sous-marin basaltique à andésitique a produit des îles éphémères jusqu’à 1 km de long à plusieurs reprises depuis sa première éruption enregistrée en 1939. Les résidents des îles voisines de Vanguna et Nggatokae (Gatokae) ont signalé un « incendie sur l’eau » avant 1939, une référence possible à des éruptions antérieures. L’édifice à peu près conique s’élève à des profondeurs d’eau de 1,1 à 1,2 km au Nord et à de plus grandes profondeurs jusqu’au Sud-Est. Les fréquentes éruptions sous-marines peu profondes et subaériennes occasionnelles produisent des explosions phréato-magmatiques qui éjectent de la vapeur, des cendres et des bombes incandescentes. À plusieurs reprises, des coulées de lave ont été observées sur les îles éphémères.
Source : GVP.
Photo : W.G. Muller, 1977 (courtesy of Deni Tuni, Ministry of Lands, Energy and Mineral Resources, Solomon Islands)., wikipedia.
Equateur , Sangay :
2,005 ° S, 78,341 ° O
Altitude : 5286 m
L’IG a signalé un niveau d’activité élevé sur le Sangay du 2 au 8 septembre. La sismicité était caractérisée par des niveaux élevés d’explosions, des tremors harmoniques, des tremblements de terre de type longue période et des signaux indiquant des émissions. Les nuages météorologiques ont souvent empêché les observations visuelles du volcan, mais les webcams du Washington VAAC et de l’IG ont enregistré des panaches de cendres quotidiens qui s’élevaient de 600 à 1 500 m au-dessus du sommet et dérivaient vers le Nord-Ouest, l’Ouest et le Sud. Des lahars étaient périodiquement générés par de fortes pluies. Le 2 septembre, des coulées pyroclastiques ont descendu le flanc Sud-Est .
RAPPORT QUOTIDIEN DE L’ETAT DU VOLCAN SANGAY , Mardi 08 Septembre 2020 .
Niveau d’activité Superficiel: Haut , Tendance de surface : Pas de changement .
Niveau d’activité interne: Haut , Tendance interne : En augmentation.
Sismicité : Du 07 Septembre 2020, 11:00 au 08 Septembre 2020, 11:00 :
Evènements de type longue périodes : 28
Explosions : 13
Tremor d’émission : 10
Tremor harmonique : 1
Pluies / lahars:
À midi hier, il y avait des signes associés à des coulées de boue et de débris causées par les pluies dans le secteur.
** En cas de fortes pluies, des lahars peuvent être générés dans rivières Volcán, Upano et autres affluents **
Emission / colonne de cendres: Aucune émission n’a cependant été observée, le Washington VAAC a signalé 4 alertes d’émissions observées par les satellites atteignant
des hauteurs allant jusqu’à 1200 mètres au-dessus du niveau du cratère . Leur direction était constante vers l’Ouest
Autres paramètres de surveillance: FIRMS a enregistré 1 alerte thermique sur le Sangay dans les dernières 24 heures.
Observations: Les conditions climatiques du secteur ont empêché toutes observations directes de l’activité de surface.
Niveau d’alerte: jaune.
Source : GVP , IGEPN.
Photo : Archive Ecu911
Japon , Suwanosejima :
29,638 ° N, 129,714 ° E
Altitude : 796 m
Le JMA a signalé une incandescence nocturne périodique dans le cratère Ontake du Suwanosejima du 28 août au 4 septembre, et il y a eu un total de 11 éruptions. Une éruption à 2 h 34 le 4 septembre a généré un panache de cendres blanches / grisâtres qui s’est élevé à 1,3 km au-dessus du bord du cratère avant d’entrer dans les nuages météorologiques. Le niveau d’alerte est resté à 2 (sur une échelle de 5 niveaux).
L’île de Suwanosejima, en forme de fuseau, longue de 8 km, dans le Nord des îles Ryukyu, se compose d’un stratovolcan andésitique avec deux cratères sommitaux historiquement actifs. Le sommet du volcan est tronqué par un grand cratère brisé s’étendant jusqu’à la mer sur le flanc Est formé par l’effondrement de l’édifice. Le Suwanosejima, l’un des volcans les plus fréquemment actifs du Japon, était dans un état d’activité strombolienne intermittente depuis l’ Otake, le cratère sommital du Nord-Est, qui a commencé son activité en 1949 et qui a duré jusqu’en 1996, après quoi les périodes d’inactivité se sont allongées. La plus grande éruption historique a eu lieu en 1813-14, lorsque d’épais dépôts de scories ont recouvert les zones résidentielles, et le cratère Sud-Ouest a produit deux coulées de lave qui ont atteint la côte Ouest. À la fin de l’éruption, le sommet de l’Otake s’est effondré, formant une grande avalanche de débris et créant la caldeira de Sakuchi en forme de fer à cheval, qui s’étend jusqu’à la côte Est. L’île est restée inhabitée pendant environ 70 ans après l’éruption de 1813-1814. Les coulées de lave ont atteint la côte Est de l’île en 1884. Seulement environ 50 personnes vivent sur l’île.
Source : GVP .
Photo : Ray Go.
Japon , Nishinoshima :
Les experts ont remarqué un changement récent dans la composition des cendres volcaniques émises sur l’île.
Le magma du volcan s’élève probablement de plus grandes profondeurs sous l’île, et les développements futurs pourraient impliquer un effondrement du pic du cratère au milieu de l’île, conduisant à un affaissement de toute l’île, selon un expert.
La période d’activité continue qui a commencé à la fin de l’année dernière a été intense.
La production quotidienne moyenne de lave a oscillé autour de trois à quatre fois le chiffre correspondant de la période 2013-2015. Fin juin, la production de lave a culminé à 4,62 millions de mètres cubes, soit plus de 20 fois les niveaux de la période précédente, selon les estimations de l’Institut de recherche sur les tremblements de terre (ERI) de l’Université de Tokyo basées sur les données du satellite météorologique Himawari-8.
Les énormes volumes de lave émis ont augmenté la masse continentale de l’île de 40%, passant de 2,89 km carrés en mai 2019 à 4,1 km carrés le 14 août cette année, selon l’Institut de recherche météorologique sur la base d’images satellite.
Un changement a également été observé dans le mode de son éruption.
Nishinoshima n’a principalement émis que de la lave jusqu’en juin, mais a commencé à rejeter d’énormes volumes de cendres volcaniques à la fin de juillet. L’île entière s’est retrouvée couverte de cendres brunâtres sur plusieurs mètres d’épaisseur.
L’analyse des cendres volcaniques recueillies à bord d’un navire en juillet par l’Agence météorologique japonaise a montré que sa teneur en dioxyde de silicium (silice) avait chuté de 60% environ à 55% environ.
L’analyse a également montré que la teneur en magnésium, calcium et autres ingrédients avait augmenté et avait pour résultat des densités de magma plus élevées.
Yoshihiko Tamura, chercheur principal en volcanologie à l’Agence japonaise pour les sciences et technologies marines-terrestres (JAMSTEC), a déclaré que le changement du mode d’activité de Nishinoshima évoque le processus d’une éruption il y a plus de 20000 ans sur l’île de Sumisujima (Smith Rocks), située entre le centre de Tokyo et Nishinoshima.
Le magma jaillissant de Sumisujima avait une origine peu profonde pendant la phase initiale de l’éruption, mais le magma a progressivement commencé à s’élever de plus grandes profondeurs.
Lorsque le magma subit une forte baisse de pression, il arrive à une sorte d ‘«ébullition», provoquant une éruption explosive. Une chambre magmatique vidée par une éruption intense peut ne plus être en mesure de supporter le poids de l’île elle-même, ce qui amènera le corps du volcan à s’effondrer sur une vaste étendue.
C’est ainsi qu’une caldeira d’environ 10 km de diamètre s’est probablement formée sur le fond marin autour de l’île de Sumisujima, ne laissant qu’une partie de la roche en saillie au-dessus de la surface de la mer.
Toute l’île de Nishinoshima pourrait céder et couler sous l’océan en cas d’éruption de la caldeira, a déclaré Tamura.
«Je ne peux pas dire si Nishinoshima continuera à grossir ou à succomber à une éruption de sa caldeira», a-t-il déclaré. «Quoi qu’il en soit, un effondrement du corps insulaire pourrait déclencher un tsunami, il est donc essentiel de suivre le cours futur de l’activité du point de vue de la gestion et de la réduction des catastrophes.»
Source : Ashahi.com .
Lire l’article en entier : http://www.asahi.com/ajw/articles/13681089?fbclid=IwAR0vzZL_LEYslouM_ckqz-IlCpAxlwGDn8mLds19MO8bZic6X7ZoSmM2bV4
Photos : Japan coast guard.