21 Aout 2018. FR. Pérou : Sabancaya , Indonésie : Ibu , Guatemala : Santiaguito , Italie : Vésuve .

Home / blog georges Vitton / 21 Aout 2018. FR. Pérou : Sabancaya , Indonésie : Ibu , Guatemala : Santiaguito , Italie : Vésuve .

21 Aout 2018. FR. Pérou : Sabancaya , Indonésie : Ibu , Guatemala : Santiaguito , Italie : Vésuve .

21 Aout 2018.

 

Pérou , Sabancaya :

Une moyenne de 27 EXP / jour a été enregistrée. Il y avait une légère augmentation de l’activité sismique associée au mouvement des fluides (type longue période). Les séismes associés à la remontée du magma (types hybrides) restent très peu nombreux et peu énergétiques. 
Les colonnes de gaz et de cendres éruptives ont atteint une hauteur maximale de 3700 m au-dessus du cratère. La dispersion de ces matériaux s’est produite dans un rayon d’environ 50 km, principalement dans les directions Sud-Est, Est et Nord-Est.

SABANCAYA

| Especialistas de Ingemmet suben al Sabancaya en Arequipa. Instalan estación multigas para monitorear el volcán y explican, que si los gases aumentan, podría originarse una gran explosión. #YaravíInforma

Publiée par Radio Yaraví Arequipa sur Samedi 18 août 2018

Les spécialistes d’Ingemmet montent sur le Sabancaya à Arequipa. Ils installent une station multigaz pour surveiller le volcan et expliquent que si les gaz augmentent, une grande explosion pourrait avoir lieu .

Le débit de gaz volcanique (SO2) a enregistré le 19 août une valeur maximale de 3100 tonnes / jour, considérée comme une valeur importante. 
La déformation de la surface du bâtiment volcanique présente des variations importantes. 
Le système de satellites MIROVA a enregistré 9 anomalies thermiques, avec des valeurs comprises entre 1 MW et 17 MW de VRP (Puissance Volcanique Rayonnée ).

En général, l’activité éruptive maintient des niveaux modérés. Aucun changement significatif n’est attendu dans les jours suivants.

Source : IGP Peru

Vidéo : Radio Yaravi Arequipa

 

Indonésie , Ibu :

Niveau d’activité de niveau II (WASPADA). Le G. Ibu (1340 m) est en éruption continuellement depuis 2008.
Depuis hier et jusqu’à ce matin, visuellement, le sommet du volcan pouvait être observé clairement jusqu’à ce qu’il soit couvert de brouillard. La fumée de l’éruption du cratère et la cendre était blanche / grise, avec une intensité faible à modérée allant jusqu’à 200-1200 m au-dessus du pic. Le vent souffle faiblement vers le Nord-Est.

Grâce aux sismographes , le 20 août 2018, il a été enregistré:
142 séismes d’éruptions
201 séismes d’émission
60 tremblements de terre d’avalanche.
1 tremor Harmonique
1 tremblement de terre lointain

Recommandation: Les gens autour du G.Ibu et les visiteurs / touristes ne doivent se déplacer,  grimper et s’approcher dans un rayon de 2 km avec une expansion sectorielle de 3,5 km vers le Nord du cratère actif du G. Ibu.

AVIS D’OBSERVATION DU VOLCAN POUR AVIATION – VONA.

Publié: 20 Aout 2018.
Volcan: Ibu (268030)
Code couleur actuel de l’aviation: ORANGE
Code d’aviation précédent: orange
Source: Observatoire du volcan Ibu
Numéro de l’avis: 2018IBU13
Emplacement du volcan: N 01 deg 29 min 17 sec E 127 deg 37 min 48 sec
Région: Nord Maluku, Indonésie
Altitude du sommet: 4240 FT (1325 M)

Résumé de l’activité volcanique:
Eruption avec un nuage de cendres volcaniques à 08h42 UTC (17h42 heure locale).

Hauteur des nuages volcaniques:
La meilleure estimation du sommet des nuages de cendres est d’environ 2580 M (8080 FT) au-dessus du niveau de la mer, peut être plus élevée que ce qui peut être observé clairement. Source de données de hauteur: observateur au sol.

Autres informations sur les nuages volcaniques:
Nuage de cendres se déplaçant vers le Nord.

Remarques:
L’activité sismique est caractérisée par des séismes d’explosion et d’avalanche de roches. L’éruption se poursuit.

Source : PVMBG , Magma Indonésie.

Photo : André Labetaa ( U Tube , 2015 ).

 

Guatemala , Santiaguito :

Type d’activité: Peléenne.
Morphologie: Complexe de dômes dacitiques
Situation géographique: 14 ° 44 ’33 ˝ Latitude N; 91 ° 34’13˝ Longitude W.
Hauteur: 2.500msnm.
Conditions météo : Partiellement nuageux
Vent: Est à 5 km / h
Précipitations: 22,7 mm


Activité:
Présence d’un dégazage de couleur blanche à 2900 mètres d’altitude que le vent disperse au Sud-Ouest.  L’OVSAN signale six faibles explosions nocturnes et tôt le matin qui font apparaître des colonnes de cendre blanche à 3300 mètres d’altitude avec une dispersion Sud-Ouest. On note des chutes de fines particules de cendre dans le périmètre volcanique, et un petit nombre d’avalanches faibles sur le flanc Sud-Est.

Source : Insivumeh.

Photo :  Wanderreise Février 2009

 

Italie , Vésuve :

Vésuve, 79 d.C. Chronique d’une éruption. par Maddalena De Lucia, Mauro Di Vito et Giovanni Orsi

Il fait sombre Une cendre dense tombe. Cela enlève le souffle et empêche la fuite. Terreur , panique partout et désespoir. Il semble que c’est la fin du monde. C’est donc ainsi que disparaissaient Pompéi, Herculanum, Boscoreale, Stabia et Oplontis, en l’an 79, enterrée dans les cendres et détruites par des coulées pyroclastiques, en raison d’une éruption du Plinienne du Vésuve , le volcan qui semblait juste une montagne, comme celles qui l’entourent. Là, dans le noir, sous une épaisse couche de produits volcaniques, les villes romaines et leurs habitants sont restés scellés pendant près de deux mille ans. Les restes visibles aujourd’hui sont un instantané parfait de la vie et de la culture de ces villes florissantes, mais en même temps, sont un témoignage de la puissance destructrice du volcan et un avertissement pour une bonne utilisation des terres.
Avec un fort tremblement de terre, le 5 février 62 après J. C , le Vésuve avait déjà donné des signes de son réveil. Après cela, beaucoup d’autres ont suivi, augmentant quelques jours avant l’éruption et accompagnés de déformations du sol. Malgré cela, l’éruption qui s’est produite après quelques siècles de repos par le Vésuve a surpris les populations qui s’étaient installées dans la région. Les Vésuviens n’imaginaient pas que ces phénomènes étaient les précurseurs d’une éruption et que leur montagne verdoyante était en réalité un volcan (figure 1).


Figure 1 – Fresque de la maison du centenaire à Pompéi, actuellement au musée archéologique national de Naples. La montagne représentée est vraisemblablement le Vésuve tel qu’il apparaissait avant l’éruption de 79 après JC. (source de l’image: https://it.wikipedia.org/wiki/File:Pompeii_-_Casa_del_Centenario_-_MAN.jpg).

L’éruption a commencé par une série d’explosions phréato-magmatiques qui ont provoqué l’ouverture de la partie terminale du conduit éruptif. Une grande quantité de cendres, de lapilli et de bombes volcaniques est tombée au sol, principalement dans les zones situées à l’Est du cratère. Au bout de quelques heures, des explosions magmatiques plus violentes – générées par la grande quantité de gaz présente dans le magma – ont alimenté pendant environ douze heures une colonne éruptive qui a atteint une trentaine de kilomètres (pas de documents iconographiques originaux, exemple de colonne : une éruption similaire , celle produite en 1991 par le volcan Pinatubo, aux Philippines, figure 2).

Figure 2 – Colonne éruptive produite lors de l’éruption du volcan Pinatubo aux Philippines en 1991 (source: US National Oceanic and Atmospheric Administration). La photo reproduit un exemple récent d’éruption avec des caractéristiques similaires à celles de l’an 79 après JC.

Pline le Jeune a observé l’éruption depuis Miseno et l’a décrite dans une lettre à Tacite: « Le nuage s’est levé, nous ne savions pas avec certitude de quelle montagne, parce que nous avons regardé de loin, seulement plus tard nous avons su  que cette montagne était le Vésuve. Sa forme était comme celle d’ un pin plus que tout autre arbre. À partir d’un énorme tronc, le nuage se tenait élevé dans le ciel et se dilatait presque en branches »(figure 3).

figure 3 – Colonne éruptive produite lors de l’éruption du mont St. Helens aux États-Unis en 1980 (source d’image: Service géologique américain). La photo reproduit un exemple récent d’éruption avec des caractéristiques similaires à celle de l’éruption du Vésuve en 79 après JC.

La partie supérieure de la colonne, qui s’est étendue comme la couronne d’un pin, a été poussée par le vent vers le Sud-Est. La chute des particules solides qu’elle contient, essentiellement de la pierre ponce et de la cendre, obscurcit complètement le ciel, rendant la fuite difficile et effrayante. Un dépôt épais s’est accumulé sur une très grande surface. Pompéi et Oplonti ont été partiellement enfouis sous environ trois mètres de pierre ponce; sous leur poids, les toits des maisons ont commencé à s’effondrer et les premières victimes ont été retrouvées.
L’effondrement partiel de la colonne d’éruption a formé un flux pyroclastiques qui a coulé à haute vitesse le long des flancs du volcan et atteint et détruit Herculanum, mais pas Pompei, beaucoup plus lointain. Pendant la nuit, l’activité éruptive a diminué en intensité. De nombreux pompéiens qui avaient fui sont rentrés chez eux pour récupérer des objets de valeur. Un exemple récent de courants pyroclastiques massifs générés par une éruption explosive provient de l’éruption du volcan Mayon aux Philippines en 1984 (figure 4).

Figure 4 – Ecoulements pyroclastiques produits lors de l’éruption du volcan Mayon aux Philippines en 1984 (source: US Geological Survey).

Aux premières heures du matin, de violentes explosions phéato-magmatiques – causées par l’interaction du magma avec l’eau de la couche contenue dans le sous-sol – ont formé un nuage qui ne s’est pas élevé dans l’atmosphère, mais a généré des courants pyroclastiques peu denses et à haute température. Ils ont versé sur les côtés du volcan. Il s’agissait de flux de cendres, de gaz et de fragments de roches très chauds, capables de se déplacer très rapidement sur les pentes du volcan. Ces flux ont atteint la mer en quelques minutes et se sont étendus sur une distance d’au moins quinze kilomètres dans la plaine de Sarno, détruisant Pompéi et tuant les survivants qui y étaient retournés (Fig. 5).

figure 5 – Moulage en plâtre de figure humaine à Pompéi. Photographie de Giorgio Sommer, 1873.

Pendant toute la journée, il y eut des explosions d’intensité modérée, jusqu’à ce que, à la tombée de la nuit, l’activité diminue rapidement et finit, laissant une épaisse couverture de pierre ponce et de cendres sur un vaste territoire. Par la suite, des pluies abondantes, également provoquées par l’introduction de vapeur et de cendres, ont remobilisé les matériaux volcaniques qui venaient de se déposer sur les pentes, formant de nombreuses coulées de boue le long des vallées du Vésuve et des Apennins, dévastant davantage le territoire.

La chronique de l’éruption de 79 après JC et de ses effets sur le territoire a été reconstruite à travers des études volcanologiques et archéologiques et des documents historiques. La date exacte de l’éruption est toutefois encore incertaine: certains érudits soutiennent que l’éruption a eu lieu le 24 août, d’autres penchent pour l’automne, en raison de la présence de moût dans les tonneaux et d’autres fruits typiquement automnaux, ainsi que de la découverte d’ une pièce qui aurait une référence chronologique ultérieure. Tous ces éléments feraient reculer la date du 24 août d’un mois au moins.

Source : B. Behncke /  Maddalena De Lucia, Mauro Di Vito et Giovanni Orsi :  https://ingvvulcani.wordpress.com/2018/08/20/vesuvio-79-d-c-cronaca-di-un-eruzione/

Note du Chaudron de Vulcain : Un livre passionnant et bien documenté sur le sujet : Les trois jours de Pompéi , d’ Alberto Angela.

 

 

Recommended Posts

Leave a Comment

Nous contacter

Nous ne sommes pas disponibles pour le moment. Mais vous pouvez nous envoyer un email a l'aide du formulaire ci-dessous.

Not readable? Change text. captcha txt

Start typing and press Enter to search