03 Aout 2018. FR . Vacances.

03 Aout 2018.



Un nouveau volcan vient de se réveiller. L’éruption est prévue jusqu’au 15 Aout.

Restez au frais.

A bientôt.



August 02 , 2018. EN. Ecuador : Reventador , United States : Yellowstone , Indonesia : Dukono , Hawai : Kilauea , INGV Vulcani : the fuel of the eruptions.

August 02 , 2018.


Ecuador , Reventador :

Morphological changes on the Reventador volcano, April – June 2018.

Summary :
The El Reventador volcano has been active since 2002 and has exhibited significant morphological changes throughout its eruptive activity, particularly in recent months. During a surveillance flight conducted in June of this year, an escarpment was identified on the west flank of the volcano next to a new lava flow. However, the data obtained by the surveillance network, overflights and satellite information analyzed suggest that the main change would have occurred between April 15 and 27 of this year. This escarpment is the result of successive explosive events that could have produced emission columns with high ash content. This activity could have generated ash falls in the provinces of Napo and Pichincha between May and July.

After the eruptive activity began in 2002, the top of the active cone was destroyed resulting in the formation of two new summits, East (3440 m) and West (3530 m) as well as two depressions formed on the northern flanks and South. Since then, the volcano has been characterized by having effusive and explosive activity, which allowed the continuous accumulation of volcanic material in the left crater in 2002. The preferential direction of its lava flows and pyroclastic flows was mainly towards the North and South, then Northeast, East and Southeast. Since 2012, eruptive activity has been explosive, allowing for greater generation and subsequent accumulation of pyroclastic materials at the top. This effect facilitated the generation of small to medium sized pyroclastic flows (<1.5 km in length). In 2017, there was a short but intense explosive activity and with it deposits of pyroclastic flows to the east flank, reaching a distance of about 3.5 km from the crater. These flows were the longest since those that were generated in 2002 that had gone down between 8 and 9 km.

Observations of recent activities:

Overview of April 26, 2018
During a flight over the volcano on April 26, the generation of a lava flow on the west flank was identified for the first time. It is assumed that this flow would have started to be emitted from April 12, from visual and thermal aerial observations. This stream was active at least 38 calendar days and reached a maximum distance of 3.8 km from the crater, Fig. 1. During this flight, it was not possible to observe the summit as it was completely cloudy.

Figure 1. Distribution of the lava flow generated in April (purple polygon) that would have been generated on the northwest flank of the volcano. In addition, the lava flow generated in June / July 2017 is observed and reaches 2.6 km (Source: IG-EPN).

Overview of June 20, 2018:
During the flight on June 20, 2018, an escarpment located between the summit and the west flank of the volcano was observed. Thanks to the analysis of the thermal images and the photographs, it was possible to observe the existence of three vents (Fig. 2, 3) which would have an explosive activity with at least the lower vent which presents an effusive activity with the generation of a small lava flow. It is assumed that its formation would have been generated between 15 and 27 April from satellite imagery (Sentinel 1), as shown in Figure 5. The possible collapse corresponds to what had already been mentioned in the Special Report No. 2, 2017 of the El Reventador volcano, which indicated a zone of weakness at the summit, which could become an unstable potential source capable of generating events such as the one mentioned above.

Fig. 2. Left: Photograph and thermal image of the west flank of the El Reventador volcano on April 12, 2018, showing that until that moment the volcano maintained its intact morphology. Right: Photo and thermal image of the same flank taken on June 20, 2018 showing the escarpment and the presence of three vents.

In addition, it has been possible to observe recent pyroclastic flow deposits that could have been generated by vent 3. In addition, at the base of this vent, the presence of a small flow of lava was observed descending to the west flank.
Throughout the overflight, the explosive activity was almost permanent from the vent 1. These explosions generated columns up to 1.5 km in altitude, with a high ash content.
This escarpment is the largest recorded since 2002 and would have a height difference of about 150 m between the highest point and the lowest point, with a maximum diameter of 550 m in the SE-WN direction (Figure 4) . Based on the analysis of the different types of instrumental data, observed field deposits, and satellite information, it is likely that the activity at the origin of the escarpment may be associated with several events that do not occur. were not of significant magnitude and would have developed between April 15 and 27, 2018.

Figure 3. Photo of the Northwest flank showing the escarpment that would have been generated by successive events between April 15th and 27th. There is also an explosion column generated by vent 1, pyroclastic flow deposits in the lower western flank and a small lava flow from vent 3. (Photo: S. Vallejo Vargas, IG -EPN).

Figure 4. Left: Map of El Reventador volcano showing the direction of a profile made in the NNW-SSE direction and the levels of the East and West peaks left in 2002. Right: NNW-SSE section showing the NNW-SSE profile of the volcano (black line) and current morphology (yellow zone) due to the activity recorded in April 2018 (Source: IG-EPN).

Figure 5. Left: Radar image of the Sentinel 1 satellite, taken on April 15, 2018. Right: Radar image of the Sentinel satellite 1 taken on April 27, 2018, in which the topographic change is clearly visible to the west of the crater of the cone active and this would indicate that it occurred before the April 27 image.

It is important to consider that the volcano maintains high levels of internal and superficial activity.
The thermal recordings observed since April 2018 show permanent zones with thermal anomalies. This could correspond to zones of greater weakness in the volcano, likely to generate sectoral collapses and associated pyroclastic flows.
The possibility that an event of less magnitude or similar to those previously observed may occur on the volcano, generating pyroclastic flows and ash falls in the near and far parts, is not excluded. This last phenomenon in particular will depend mainly on parameters such as the amount of material generated and the direction of the wind.
Finally, it is important to mention that the current eruptive activity combined with the high slopes of the volcanic cone can generate sectoral avalanches from the top of the cone, as shown by those that occurred in June 2017 (Report of the work of the IGEPN on the El Reventador volcano, published in May / 2018).

Instituto Geofísico
Escuela Politécnica Nacional

Photos : J. L. Espinosa Naranjo , IGEPN.


United States , Yellowstone :

44°25’48 » N 110°40’12 » W,
Summit Elevation 9203 ft (2805 m)
Current Volcano Alert Level: NORMAL
Current Aviation Color Code: GREEN

Recent work and news

Steamboat geyser remained active in July, with eruptions on July 6 and 20. Some field work also took place in the Park, including geological mapping and the installation of a new gas monitoring array at Bison Flat near the Norris Geyser Basin. The gas sensors are designed to run year-round and are the first of their kind in Yellowstone. All other gas monitoring in the park consists of spot checks or temporary deployments that have never been continuous for more than a few months at a time. We are hopeful that this new data stream will provide insights into how gas concentrations vary according to seasonal (summer versus winter) and environmental (wind, rain, temperature, humidity, etc.) conditions.

Yellowstone Volcano Observatory scientists are also continuing to assist colleagues in Hawaiʻi with the response to the ongoing crisis at Kīlauea Volcano.


During July 2018, the University of Utah Seismograph Stations, responsible for the operation and analysis of the Yellowstone Seismic Network, located 153 earthquakes in the Yellowstone National Park region. The largest event was a micro earthquake of magnitude 2.5 on July 4 at 7:09 PM (MDT) and was part of a small sequence of 12 earthquakes located about eight miles east southeast of West Thumb, WY, and that occurred during July 2–10.

A larger sequence of 77 earthquakes occurred ~14 miles south-southwest of Mammoth, WY, during July 16–27. The largest earthquake of this swarm was a micro earthquake of magnitude 2.3 on July 24 at 8:40 PM (MDT).

Earthquake sequences like these are common and account for roughly 50% of the total seismicity in the Yellowstone region.

Yellowstone earthquake activity remains at background levels.

Ground deformation

Motion at nearly all GPS stations in Yellowstone was flat throughout July. During the first half of 2018, patterns of caldera subsidence and Norris uplift were steady, following trends that had been persistent since 2015. Since late June and through July, however, there has been no significant deformation recorded in the Norris and caldera areas. Whether this is a seasonal hiccup or a longer-term change remains to be seen. Similar pauses in deformation trends have occurred during previous summers, suggesting that seasonal changes, perhaps due to surface and subsurface water conditions, play a role in controlling Yellowstone deformation.

The Yellowstone Volcano Observatory (YVO) provides long-term monitoring of volcanic and earthquake activity in the Yellowstone National Park region.

Source : YVO.

Photos : USGS


Indonesia , Dukono :


Issued: July 31 , 2018.
Volcano: Dukono (268010)
Current Aviation Colour Code: ORANGE
Previous Aviation Colour Code: orange
Source: Dukono Volcano Observatory
Notice Number: 2018DUK141
Volcano Location: N 01 deg 41 min 35 sec E 127 deg 53 min 38 sec
Area: North Maluku, Indonesia
Summit Elevation: 3933 FT (1229 M)

Volcanic Activity Summary:
Eruption with volcanic ash cloud at 22h05 UTC (07h05 local).

Volcanic Cloud Height:
Best estimate of ash-cloud top is around 20370.9FT (6173 FT (1929 M) M) above sea level, may be higher than what can be observed clearly. Source of height data: ground observer.

Other Volcanic Cloud Information:
Ash cloud moving to North-Northwest.

Eruption and ash emission is continuing.

Source : Magma Indonésie

Photo : S Chermette / 80 Jours voyages .


Hawai , Kilauea :

Wednesday, August 1, 2018, 12:29 PM HST (Wednesday, August 1, 2018, 22:29 UTC)

19°25’16 » N 155°17’13 » W,
Summit Elevation 4091 ft (1247 m)
Current Volcano Alert Level: WARNING
Current Aviation Color Code: ORANGE

Kīlauea Volcano Lower East Rift Zone

Fissure 8 continues to erupt lava into the channel leading northeastward from the vent. No overflows were reported this morning and lava levels in the more distant portions of the channel system appear low. At the coast, the south edge of the lava flow has not advanced westward in the past day, and remains less than 175 m (0.1 mi) from the Pohoiki boat ramp in Isaac Hale Park. Lava is actively entering the ocean along a broad 2 km (1.2 mi) flow front centered near the former Ahalanui Beach Park.

Aerial view to the southeast of the lava channel of crack 8. The overflows formed a lava pond in the meander of the fairway just west of the Kapoho crater (vegetated cone on the left).


No other fissures are active this morning.

Kīlauea Volcano Summit

Seismicity at Kilauea’s summit is back to 20-35 earthquakes per hour after the collapse event at 7:59 AM HST July 31 which was very similar to previous events.

Source : HVO


INGV Vulcani , the fuel of the eruptions:

Volcanic gas: the fuel of eruptions.
by Giorgio Capasso

The study of volcanic gases makes it possible to obtain very important information on the state of activity of a volcano. They are like telegrams sent by the magma to describe its conditions of temperature and pressure.

Figure 1 – Vulcano Island. High temperature fumarolic field at the edge of the crater « La Fossa »

Figure 2 – High temperature volcanic gas sampling system.

The gaseous emissions are always present during an eruption and are often the only visible manifestation of a volcano during quiescence. During an eruption, huge amounts of gas are emitted in the order of several thousand tons per day.
Volcanic gases are dissolved in the magma and among them the most important and also the most abundant is water (H2O). In addition to water, they consist of carbon dioxide (CO2), sulfur (SO2, H2S), hydrogen (H2), carbon monoxide (CO), methane (CH4), chlorine and fluorine (HCl, HF) in addition to very small amounts of rare gases such as helium (He), neon (Ne) and argon (Ar).
Near volcanic vents, the gases are responsible for deposits of sulfur, iron chloride and ammonium sublimates.

Figure 3 – Sublimated sulfur and ammonium chloride of a fumarole of the crater « La Fossa » (Vulcano Island)

Many metals such as iron, lead, tin, and gold have also been identified in sublimates, which is an important indication of how metals are transported through crustal rocks for subsequent focus on mineral deposits.
In general terms, an eruption can be considered as the transfer of thermal energy contained in the magma to the surface of the Earth. Thus, a volcano can be compared to a thermal machine that converts thermal energy into mechanics. Gases in general, but water in particular, allow this transformation of energy. Indeed, when a certain amount of water passes from the liquid state to the vapor state, it increases its volume by about 1000 times.
In addition, volcanic gases have played an important role in the geological evolution of the planet and probably in the birth of life on Earth. More and more established theories indicate that the Earth’s atmosphere and ocean water can be largely derived from the gases emitted by volcanic activity.

Source : Giorgio Capasso , https://ingvvulcani.wordpress.com/2018/07/30/i-gas-vulcanici/

02 Aout 2018. FR . Equateur : Reventador , Etats-Unis : Yellowstone , Indonésie : Dukono , Hawai , Kilauea , INGV Vulcani : le carburant des éruptions .

2 Aout 2018.


Equateur , Reventador :

Changements morphologiques sur le volcan Reventador , Avril – Juin 2018.

Résumé :
Le volcan El Reventador est actif depuis 2002 et a présenté d’importants changements morphologiques tout au long de son activité éruptive, en particulier au cours des derniers mois. Lors d’un survol de surveillance effectué en juin de cette année, un escarpement a été identifié sur le flanc Ouest du volcan à côté d’une nouvelle coulée de lave. Cependant, les données obtenues par le réseau de surveillance, les survols et les informations satellitaires analysées suggèrent que le principal changement se serait produit entre le 15 et le 27 avril de cette année. Cet escarpement serait le résultat d’événements explosifs successifs qui auraient pu produire des colonnes d’émission à forte teneur en cendres. Cette activité aurait pu générer des chutes de cendres dans les provinces de Napo et Pichincha entre les mois de mai et juillet.

Antécédents :
Après l’activité éruptive a commencé en 2002, le sommet du cône actif a été détruit entraînant la formation de deux nouveaux sommets, l’Est (3440 m) et  l’Ouest (3530 m) ainsi que deux dépressions formées sur les flancs Nord et Sud. Depuis lors, le volcan a été caractérisé par ayant une activité effusive et explosive, ce qui a permis l’accumulation continue de matériau volcanique dans le cratère gauche en 2002. La direction préférentielle de ses coulées de lave et coulées pyroclastiques a été principalement vers le Nord et au Sud, puis au Nord-Est, à l’Est et au Sud-Est. Depuis l’année 2012, l’activité éruptive a été explosive, ce qui a permis une plus grande génération et une accumulation subséquente de matériaux pyroclastiques au sommet. Cet effet a facilité la génération de coulées pyroclastiques de taille petite à moyenne (<1,5 km de longueur). En 2017, il y a eu une activité explosive courte mais intense et avec elle des dépôts de coulées pyroclastiques vers le flanc Est, atteignant une distance d’environ 3,5 km du cratère. Ces flux ont été les plus longs depuis ceux qui ont été générés en 2002 qui étaient descendus entre 8 et 9 km.

Observations d’activités récentes:
Survol du 26 avril 2018
Lors d’un vol au-dessus du volcan le 26 avril dernier, la génération d’une coulée de lave sur le flanc Ouest a été identifiée pour la première fois. On suppose que ce flux aurait commencé à être émis à partir du 12 avril, ceci à partir d’observations aériennes visuelles et thermiques. Ce flux a été actif au moins 38 jours civils et a atteint une distance maximale de 3,8 km du cratère, Fig. 1. Pendant ce survol, il n’a pas été possible d’observer le sommet car il était complètement nuageux.

Figure 1. Répartition de la coulée de lave générée en avril (polygone violet) qui aurait été générée sur le flanc nord-ouest du volcan. De plus, le flux de lave généré en juin / juillet 2017 est observé et atteint 2,6 km (Source: IG-EPN).

Survol du 20 juin 2018 :
Au cours du survol du 20 juin 2018, un escarpement situé entre le sommet et le flanc Ouest du volcan a été observé. Grâce à l’analyse des images thermiques et des photographies, il a été possible d’observer l’existence de trois évents (Fig. 2, 3) qui auraient une activité explosive avec au moins l’évent inférieur qui présente une activité effusive avec la génération d’une petite coulée de lave. Il est supposé que sa formation aurait été générée entre le 15 et le 27 avril à partir des observations d’images satellites (Sentinel 1), comme indiqué sur la figure 5. L’effondrement possible correspond à ce qui avait déjà été mentionné dans le Rapport spécial n ° 2, 2017 du volcan El Reventador, qui indiquait une zone de faiblesse au sommet, qui pourrait devenir une source potentielle instable capable de générer des événements tels que celui mentionné ci-dessus.

Fig. 2. À gauche: Photographie et image thermique du flanc Ouest du volcan El Reventador le 12 avril 2018, montrant que jusqu’à ce moment le volcan maintint sa morphologie intacte. À droite: Photo et image thermique du même flanc prise le 20 juin 2018 montrant l’escarpement et la présence de trois évents.

En outre, il a été possible d’observer des dépôts de coulées pyroclastiques récentes qui auraient pu être générées par l’évent 3. En outre, à la base de cet évent , il a été observée la présence d’un petit écoulement de lave descendant vers le flanc Ouest.
Pendant tout le survol, l’activité explosive était presque permanente à partir de l’évent 1. Ces explosions ont généré des colonnes jusqu’à 1,5 km  d’altitude , avec une teneur élevée en cendres.
Cet escarpement est le plus important enregistré depuis 2002 et aurait une différence de hauteur d’environ 150 m entre le point le plus haut et le point le plus bas, avec un diamètre maximum de 550 m dans la direction SE-WN (figure 4). Sur la base de l’analyse des différents types de données instrumentales, des dépôts observés sur le terrain et des informations satellitaires, il est probable que l’activité à l’origine de l’escarpement puisse être associée à plusieurs événements, qui n’étaient pas d’une ampleur significative et qui se seraient développés entre le 15 et le 27 avril 2018.

Figure 3. Photo du flanc Nord-Ouest montrant l’escarpement qui aurait été généré par des événements successifs entre le 15 et le 27 avril. Il y a aussi une colonne d’explosion générée par l’ évent 1, des dépôts de coulées pyroclastiques dans la partie inférieure du flanc Ouest et une petite coulée de lave provenant de l’ évent 3. (Photo: S. Vallejo Vargas, IG-EPN).

Figure 4. A gauche: Carte du volcan El Reventador indiquant la direction d’un profil effectué dans la direction NNW-SSE et les niveaux des sommets Est et Ouest laissés en 2002. Droite: Coupe NNW-SSE montrant le profil NNW-SSE du volcan (ligne noire) et morphologie actuelle (zone jaune) en raison de l’activité enregistrée en avril 2018 (Source: IG-EPN).

Figure 5. À gauche: Image radar du satellite Sentinel 1 ,  prise le 15 Avril 2018. A droite: Image radar du satellite  Sentinel 1 prise le 27 Avril 2018, dans lequel le changement topographique est clairement visible vers l’ Ouest du cratère du cône actif et cela indiquerait qu’il s’est produit avant l’image du 27 avril.

Il est important de considérer que le volcan maintient des niveaux élevés d’activité interne et superficielle.
Les enregistrements thermiques observés depuis avril 2018 montrent des zones permanentes présentant des anomalies thermiques. Cela pourrait correspondre à des zones de plus grande faiblesse dans le volcan, susceptibles de générer des effondrements sectoriels et des flux pyroclastiques associés.
La possibilité qu’un événement de moindre magnitude ou similaire à ceux précédemment observés puisse se produire sur le volcan, générant des écoulements pyroclastiques et des chutes de cendres dans les parties proches et lointaines, n’est pas exclue. Ce dernier phénomène en particulier dépendra principalement de paramètres tels que la quantité de matériau généré et la direction du vent.
Enfin, il est important de mentionner que l’activité éruptive actuelle combinée avec les hautes pentes du cône volcanique peut générer des avalanches sectorielles à partir du sommet du cône, comme le montre celles qui ont eu lieu en Juin 2017 (Rapport des travaux de l’IGEPN sur le volcan El Reventador, publié en mai / 2018).).

Instituto Geofísico
Escuela Politécnica Nacional

Photos : J. L. Espinosa Naranjo , IGEPN.


Etats-Unis , Yellowstone :

44 ° 25’48 « N 110 ° 40’12 » W,
Sommet : 9203 pi (2805 m)
Niveau d’alerte volcanique actuel: NORMAL
Code couleur actuel de l’aviation: VERT

Travaux récents et nouvelles :

Le geyser Steamboat est resté actif en juillet, avec des éruptions les 6 et 20 juillet. Des travaux de terrain ont également eu lieu dans le parc, notamment la cartographie géologique et l’installation d’une nouvelle installation de surveillance des gaz à Bison Flat près de Norris Geyser Basin. Les capteurs de gaz sont conçus pour fonctionner toute l’année et sont les premiers du genre à Yellowstone. Tous les autres contrôles de gaz dans le parc consistent en des vérifications ponctuelles ou des déploiements temporaires qui n’ont jamais été continus depuis plus de quelques mois à la fois. Nous espérons que ce nouveau flux de données permettra de mieux comprendre comment les concentrations de gaz varient selon les conditions saisonnières (été / hiver) et environnementales (vent, pluie, température, humidité, etc.).

Les scientifiques de l’Observatoire du volcan de Yellowstone continuent également d’aider leurs collègues à Hawai’i à réagir à la crise en cours sur le volcan Kīlauea.

Sismicité :

En juillet 2018, les stations sismologiques de l’Université de l’Utah, responsables du fonctionnement et de l’analyse du réseau sismique de Yellowstone, ont localisé 153 séismes dans la région du parc national de Yellowstone. Le plus grand événement était un micro-tremblement de terre de magnitude 2,5 le 4 juillet à 19h09 (MDT) et faisait partie d’une petite séquence de 12 tremblements de terre situés à environ huit miles au sud-est de West Thumb, WY.  

Une plus grande séquence de 77 séismes s’est produite à environ 14 milles au sud-sud-ouest de Mammoth, au WY, du 16 au 27 juillet. Le plus gros séisme de cet essaim a été un micro-séisme de magnitude 2,3 le 24 juillet à 20h40 .

Des séquences de tremblements de terre comme celles-ci sont courantes et représentent environ 50% de la sismicité totale dans la région de Yellowstone.

L’activité sismique de Yellowstone reste à des niveaux de fond.

Déformation du sol :

Les enregistrements de presque toutes les stations GPS à Yellowstone était plat tout au long de Juillet. Au cours de la première moitié de 2018, les tendances de la subsidence de la caldeira et du soulèvement à Norris étaient stables, suivant des tendances persistantes depuis 2015. Cependant, depuis la fin de juin et jusqu’en juillet, aucune déformation significative n’a été enregistrée dans les zones Norris et caldeira. Que ce soit un hoquet saisonnier ou un changement à plus long terme , cela reste à voir. Des pauses similaires dans les tendances de la déformation ont eu lieu au cours des étés précédents, suggérant que les changements saisonniers, peut-être en raison des conditions de surface et de sous-surface, jouent un rôle dans la déformation de Yellowstone.

L’observatoire du volcan Yellowstone (YVO) assure une surveillance à long terme des activités volcaniques et sismiques dans la région du parc national de Yellowstone.

Source : YVO.

Photos : USGS


Indonésie , Dukono :


Délivré: 31 Juillet 2018 
Volcan: Dukono (268010)
Code   couleur actuel de l’aviation: ORANGE
Code couleur aviation précédent: orange
Source: Observatoire du volcan Dukono
Numéro de l’avis: 2018DUK141
Localisation du volcan : N 01 deg 41 min 35 sec E 127 deg 53 min 38 sec
Région: Moluques du Nord, Indonésie
Altitude du sommet: 3933 FT (1229 M)

Résumé de l’activité volcanique:
Éruption avec nuage de cendres volcaniques à 22h05 UTC (07h05 local).

Hauteur du nuage volcanique:
La meilleure estimation du sommet des nuages de cendres est d’environ 20370.9FT (1929 M (6173 FT) au-dessus du niveau de la mer, peut être plus élevée que ce que l’on peut observer clairement. Source de données de hauteur: observateur au sol.

Autres informations sur le nuage volcanique:
Nuage de cendres se déplaçant vers Nord-Nord-Ouest.

L’éruption et l’émission de cendres se poursuivent.

Source : Magma Indonésie

Photo : S Chermette / 80 Jours voyages .


Hawai , Kilauea :

Mercredi 1er août 2018, 12 h 29 HST (mercredi 1er août 2018, 22:29 UTC)

19 ° 25’16 « N 155 ° 17’13 » W,
Sommet :4091 pi (1247 m)
Niveau d’alerte volcanique actuel: AVERTISSEMENT
Code couleur actuel de l’aviation: ORANGE

Volcan Kīlauea , Lower East Rift Zone

La fissure 8 continue de faire éruption de  lave dans le chenal partant de l’évent vers le Nord-Est. Aucun débordement n’a été signalé ce matin et les niveaux de lave dans les parties les plus éloignées du système de canaux semblent faibles. Sur la côte, le bord Sud de la coulée de lave n’a pas avancé vers l’Ouest au cours de la dernière journée et reste à moins de 175 m de la rampe de Pohoiki dans le parc Isaac Hale. La lave pénètre activement dans l’océan le long d’un large front d’écoulement de 2 km (1.2 mi) centré près de l’ancien parc de la plage Ahalanui.

Vue aérienne vers le sud-est du canal de lave de la fissure 8 . Les débordements ont formé une mare de lave dans le méandre du chenal juste à l’ouest du cratère Kapoho (cône végétalisé à gauche).


Aucune autre fissure n’est active ce matin.

Sommet du volcan Kīlauea

La sismicité au sommet de Kilauea est de retour à 20-35 tremblements de terre par heure après l’effondrement à 07h59 HST le 31 juillet, ce qui était très similaire aux événements précédents.

Source : HVO


INGV Vulcani , le carburant des éruptions :

Gaz volcanique: le carburant des éruptions.
par Giorgio Capasso

L’étude des gaz volcaniques permet d’obtenir des informations très importantes sur l’état d’activité d’un volcan. Ils sont comme des télégrammes envoyés par le magma pour décrire ses conditions de température et de pression.

Figure 1 – Île Vulcano. Champ fumerolien à haute température au bord du cratère « La Fossa »

Figure 2 – Système d’échantillonnage des gaz volcaniques à haute température.

Les émissions gazeuses sont toujours présentes lors d’une éruption et sont souvent la seule manifestation visible d’un volcan en période de quiescence. Lors d’une éruption, d’énormes quantités de gaz sont émises de l’ordre de plusieurs milliers de tonnes par jour.
Les gaz volcaniques sont dissous dans le magma et parmi eux le plus important et aussi le plus abondant est l’eau (H2O). En plus de l’eau, ils sont constitués de dioxyde de carbone (CO2), de soufre (SO2, H2S), d’hydrogène (H2), de monoxyde de carbone (CO), de méthane (CH4), de chlore et de fluor (HCl, HF ) en plus de très petites quantités de gaz rares tels que l’hélium (He), le néon (Ne) et l’argon (Ar).
Près des bouches volcaniques, les gaz sont à l’origine de dépôts de soufre, de chlorure de fer et de sublimats d’ammonium.

Figure 3 – Sublimés de soufre et de chlorure d’ammonium d’une fumerolle du cratère « La Fossa » (île Vulcano)

De nombreux métaux tels que le fer, le plomb, l’étain et l’or ont également été identifiés dans les sublimats, ce qui donne une indication importante de la façon dont les métaux sont transportés à travers les roches de la croûte terrestre pour ensuite se concentrer sur les dépôts minéraux.
En termes généraux, une éruption peut être considérée comme le transfert de l’énergie thermique contenue dans le magma vers la surface de la Terre. Ainsi, un volcan peut être comparé à une machine thermique qui transforme l’énergie thermique en mécanique. Les gaz en général, mais l’eau en particulier, permettent cette transformation de l’énergie. En effet, lorsqu’une certaine quantité d’eau passe de l’état liquide à l’état de vapeur, elle augmente son volume d’environ 1000 fois.
De plus, les gaz volcaniques ont joué un rôle important dans l’évolution géologique de la planète et probablement dans la naissance de la vie sur Terre. Des théories de plus en plus accréditées indiquent que l’atmosphère terrestre et l’eau des océans peuvent être largement dérivées des gaz émis par l’activité volcanique.

Source : Giorgio Capasso , https://ingvvulcani.wordpress.com/2018/07/30/i-gas-vulcanici/