April 27, 2024. EN. Alaska : Shishaldin , Iceland : Reykjanes Peninsula , Chile : Puyehue – Cordon Caulle , Italy : Campi Flegrei , Guatemala : Santiaguito .

April 27 , 2024.


Alaska , Shishaldin :

Low-level unrest continues at Shishaldin Volcano, with occasional small volcanic earthquakes and weak seismic tremor being observed throughout the week. Sulfur dioxide emissions were detected on April 19 and 20 with satellite-based sensors, but no ash emissions or new deposits were observed in satellite data. Weak steam emissions were occasionally seen in webcam views when the summit was clear.

No changes at Shishaldin’s summit were observed in satellite radar data, but minor rock falls associated with collapse events from the unstable ground in and near the summit crater are possible. These events may generate very small clouds of fine-grained ash that dissipate quickly in the immediate vicinity of the summit.

No significant eruptive activity has occurred since November 2023.

Local seismic and infrasound sensors, web cameras, and a geodetic network are used to monitor Shishaldin Volcano. In addition to the local monitoring network, AVO uses nearby geophysical networks, regional infrasound and lighting data, and satellite images to monitor the volcano.

Source : AVO

Photo : Beesley, Nick.


Iceland , Reykjanes Peninsula :

The accumulation of magma under Svartsengi since March 16 is approaching 10 million m3. Gas is still measured in the area and is clearly visible in a satellite image
Updated April 26 at 12:30 p.m.

The part of the lava bed close to the defenses to the east of Grindavík continues to thicken slowly

The uprising in Svartsengi continues at the same pace

If magma accumulation continues at a similar rate, there is a greater chance that the power of the eruption on the Sundhnúks crater series will increase significantly. There is still a risk of gas pollution in the region.

The Sundhnúk eruption continues and, as since April 5, a crater, a short distance east of Sundhnúk, is active. Lava flows a short distance south of the crater in an open lava river, but further away in closed channels. The part of the lava bed close to the defenses to the east of Grindavík continues to thicken slowly.

The uplift at Svartsengi continues apace as models predict that the amount of magma added to the Svartsengi magma chamber since the eruption began on March 16 is now approaching 10 million m3, as shown in the graph below. below. In previous events, magma flowed from Svartsengi when between 8 and 13 million m3 were added to the magma chamber since the last magma flow.


If magma accumulation continues at a similar rate, there is a greater chance that the power of the eruption on the Sundhnúks crater series will increase significantly.

New fissures could open in the area between Stóra-Skógfell and Hagafell and/or the existing fissure expand due to a sudden increase in lava flow which could be comparable to the initial phase of the last eruption volcanic in the region. This could happen with very little or no notice.
It is also possible that the flow of magma from the magma chamber beneath Svartsengi towards the Sundhnúks crater series gradually increases until there is a balance between the influx of magma into the magma chamber and the outflow towards the surface.
It is also possible that there will be a magma flow that will end with new fissures opening elsewhere than in the area between Stóra-Skógfell and Hagafell. This scenario is considered less likely than the others and would be accompanied by considerable seismic activity and earlier deformations than previous eruptions.

Image from the Norwegian Meteorological Agency webcam taken at 4:30 a.m. this morning shortly before sunrise. The camera is located at the top of Þorbirn and looks northeast towards the crater.

On Wednesday April 24, experts from the Norwegian Meteorological Agency carried out measurements of gas emissions from the eruption. It is estimated at 6-9 kg/s of SO2, but during the last measurement two weeks ago, on April 12, the gas emission was estimated at 10-18 kg/s. There is no evidence that it is getting gas emissions from the eruption. As the eruption continues, the SO2 flux can vary significantly from day to day (as shown in the Fagradalsfjall eruptions). There is still a risk of gas pollution in the area around the crater as well as in settlements on the Reykjanes Peninsula, and we advise residents in the area to monitor air quality and learn about the response to air pollution caused by the volcanic eruption.

Source  : IMO

Photos : IMO , Hörður Kristleifsson.


Chile , Puyehue – Cordon Caulle :

Special Report on Volcanic Activity (REAV), Los Lagos region, Puyehue-Cordon Caulle volcanic complex, April 26, 2024, 4:00 p.m. local time (mainland Chile).

The National Service of Geology and Mines of Chile (Sernageomin) publishes the following PRELIMINARY information, obtained using the monitoring equipment of the National Volcanic Monitoring Network (RNVV), processed and analyzed at the Southern Andean Volcanological Observatory ( Ovdas):

According to the results obtained from the GNSS stations installed on the volcanic complex and the analysis of RADAR satellite images, an area of active inflation has been identified since 2012, the maximum of which is located approximately 6 km to the West-North-West of the emission center associated with the 2011 eruption. During the first months of the year, an increase in the accumulated vertical elevation speed was observed, reaching 42 cm, calculated at the GNSS station located 3 km from the maximum inflation zone.

In addition, since the middle of 2020 there has been an increase in the occurrence of volcano-tectonic (VT) and hybrid (HB) type seismicity, of high magnitude (ML>3.0), which is mainly associated with a superficial source located near the eruptive center of 2011. This in relation to other types of volcanic seismicity, especially associated with the dynamics of magmatic or hydrothermal fluids inside the volcanic conduits, while keeping low levels, both in quantity than in energy.

It should be mentioned that, although the monitoring parameters do not suggest a destabilization of the volcanic system, the area near the point of emission of the 2011 eruption presents gas emanations and superficial areas that record temperatures close to 90°C, consequence of the presence of a remnant magmatic body from the last eruption.

In summary, given the high value of deformation observed, which could be related to an overpressure of the system, the technical alert level is preventively raised to the YELLOW level.

Source et photo : Sernageomin.


Italy , Campi Flegrei :

The Campi Flegrei are the largest active urbanized caldera in the heart of the European continent. Since 2005, it has been affected by the bradyseismic phenomenon which causes ground uplifts, earthquakes and fumarole emissions.
The caldera is monitored by a continuous multiparametric monitoring system. All the data provided by this system, at the moment, do not show evidence of an imminent volcanic eruption, much less of large proportions (Campania Volcano Monitoring Bulletins).
Volcanic risk mitigation actions rely on sharing correct information on the state of the volcano. Sharing can take many forms, such as the publication of data and bulletins on institutional websites, school meetings, meetings with the population exposed to risk, seminars, conferences, training for journalists, etc. The broad spectrum of these activities is constantly practiced by our Institute (we remember the last meeting with the Phlegrean population on April 11).

Faced with this commitment, what we observe in certain press articles relaunching a Swiss television documentary on the catastrophic effects of a future eruption at Campi Flegrei is therefore dissonant. This is information that is not data-driven and completely ignores all the important science and planning activities that have seen, and still see, scientists and civil protection working side by side to best manage the volcanic risk and its consequences, their knowledge and the risk of one of the most anthropized regions in the world.

Since 2012, hazard studies have made it possible to define the most likely eruptive occurrence scenarios in the area. And even if the scenario with the highest probability of occurrence is that of a small eruption (as happened for the Monte Nuovo eruption of 1538), as a reference scenario for the evaluation of potentially exposed areas to different phenomena during a future eruption, that relating to the most intense phase of a medium-scale eruption (like that which occurred at Astroni 4000 years ago) was chosen. For this scenario, an emergency plan was defined and areas exposed to different types of dangers were identified (pyroclastic flows for the red zone, ash falls for the yellow zone).
One of the characteristics of the Phlegrean caldera, and of calderas in general, is the difficulty of establishing a priori the area in which an eruptive vent will open, which could lead to greater uncertainty in the identification of areas potentially exposed to dangerous phenomena. To overcome this problem, areas subject to the impact of pyroclastic flows and ash falls were identified by considering all possible positions of a new eruptive vent.


The probability that the next eruption will be of the Campanian Ignimbrite/Neapolitan Yellow Tuff type is very low. Additionally, for these very large-scale eruptions to occur, a huge amount of magma must enter the system. This would generate macroscopic signals that would not escape our surveillance system or the inhabitants of the area. Suffice it to say that before the last epoch of activity, during which 27 explosive eruptions occurred with a total volume of emitted magma of less than 3 km3, the area between Monte Nuovo and Pietra increased by approximately 50 mr.
During the two most devastating eruptions (Ignimbrite Campana and Neapolitan Yellow Tuff), tens to hundreds of cubic kilometers of magma were emitted in a single event.

How could these phenomena occur without significant and unnoticed precursors?

Source :Carlo Doglioni (Président de l’INGV), Francesca Bianco (Directrice du Département Volcans de l’INGV), Mauro A. Di Vito (Directeur de l’Observatoire Vésuvien de l’INGV)

Read the full article : https://www.ingv.it/stampa-e-urp/stampa/comunicati-stampa/5556-campi-flegrei-l-ingv-chiarisce-rischio-eruttivo-e-pericolosita?utm_content=buffer52073&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer&fbclid=IwZXh0bgNhZW0CMTAAAR1P1WzJ1Rgl9sFPbphlAqgyvWmd_qXu7ZLe8MqjgUPXg6f7VaKg-S4OBw0_aem_AThazw5o2_8Cs97uoMETTXitdQV4bwOQ1m_iIPo-q9cM49BuLsi0yg7jX6nRZRQKhLEPHf1o_y7pi2bTqWiHHM21

Photos : INGV , Stanley-goodspeed.


Guatemala , Santiaguito :

Weather conditions: Clear weather.
Wind: South-East.
Precipitation: 3.4 mm.

The Santiaguito Volcano Observatory reports activity in the Caliente dome, with continued low degassing, raising columns of water vapor and other magmatic gases to heights of 300 meters above the dome, as the wind moves towards the West and the South-West. During the night and early morning, explosions were observed and heard even at El Nuevo Palmar, as well as continued incandescence in the dome and on its flanks due to the constant extrusion of lava in blocks. Small and moderate explosions occur at a rate of 1 to 3 per hour, accompanied by low rumbling and outgassing noises, raising columns of water vapor and ash to heights of 700 meters above the dome.

They cause the descent of pyroclastic flows over short distances, mainly towards the southwest, south and southeast flanks of the Caliente dome, piling the material in promontories on the aforementioned flanks. The wind blows to the West and South-West, so there may be weak ashfall in the area of San Marcos Palajunoj, Finca Pauwlonias and surrounding areas. In the afternoon and evening, the forecast rains could cause lahars to descend in different channels of the volcano. The activity remains at a high level, so it is possible that with the explosions or under the effect of gravity, part of the accumulated material collapses and that pyroclastic flows over long distances are generated towards the South- West, South and South-East.

Source : Insivumeh.

Photo : Edgar Cabrera / CONRED

27 Avril 2024. FR. Alaska : Shishaldin , Islande : Péninsule de Reykjanes , Chili : Puyehue – Cordon Caulle , Italie : Campi Flegrei , Guatemala : Santiaguito .

27 Avril 2024.


Alaska , Shishaldin :

Des troubles de faible intensité se poursuivent sur volcan Shishaldin, avec de petits tremblements de terre volcaniques occasionnels et de faibles tremors sismiques observés tout au long de la semaine. Des émissions de dioxyde de soufre ont été détectées les 19 et 20 avril à l’aide de capteurs satellitaires, mais aucune émission de cendres ni aucun nouveau dépôt n’a été observé dans les données satellitaires. De faibles émissions de vapeur ont parfois été observées sur les vues des webcams lorsque le sommet était dégagé.

Aucun changement au sommet du Shishaldin n’a été observé dans les données radar satellite, mais des chutes de pierres mineures associées à des événements d’effondrement du sol instable dans et à proximité du cratère sommital sont possibles. Ces événements peuvent générer de très petits nuages de cendres à grains fins qui se dissipent rapidement à proximité immédiate du sommet.

Aucune activité éruptive significative ne s’est produite depuis novembre 2023.

Des capteurs sismiques et infrasons locaux, des caméras Web et un réseau géodésique sont utilisés pour surveiller le volcan Shishaldin. En plus du réseau de surveillance local, l’AVO utilise les réseaux géophysiques à proximité, les données régionales d’infrasons et de foudre, ainsi que les images satellite pour surveiller le volcan.

Source : AVO

Photo : Beesley, Nick.


Islande , Péninsule de Reykjanes :

L’accumulation de magma sous Svartsengi depuis le 16 mars approche les 10 millions de m3 . Le gaz est toujours mesuré dans la zone et est clairement visible sur une image satellite
Mise à jour le 26 avril à 12h30

La partie du lit de lave proche des défenses à l’Est de Grindavík continue de s’épaissir lentement

Le soulèvement à Svartsengi continue sur le même rythme

Si l’accumulation de magma se poursuit à un rythme similaire, il y a de plus grandes chances que la puissance de l’éruption sur la série de cratères Sundhnúks augmente considérablement. Il existe toujours un risque de pollution gazeuse dans la région.

L’éruption de Sundhnúk se poursuit et, comme depuis le 5 avril, un cratère, à une courte distance à l’Est de Sundhnúk, est actif. La lave coule à une courte distance au Sud du cratère dans une rivière de lave ouverte, mais plus loin dans des canaux fermés. La partie du lit de lave proche des défenses à l’Est de Grindavík continue de s’épaissir lentement.

Le soulèvement à Svartsengi continue au même rythme alors que les modèles prédisent que la quantité de magma ajoutée à la chambre magmatique de Svartsengi depuis le début de l’éruption le 16 mars approche désormais les 10 millions de m3, comme le montre le graphique ci-dessous. Lors d’événements précédents, du magma s’est écoulé depuis Svartsengi lorsqu’entre 8 et 13 millions de m3 ont été ajoutés à la chambre magmatique depuis la dernière coulée magmatique.


Si l’accumulation de magma se poursuit à un rythme similaire, il y a de plus grandes chances que la puissance de l’éruption sur la série de cratères Sundhnúks augmente considérablement.

De nouvelles fissures pourraient s’ouvrir dans la zone située entre Stóra-Skógfell et Hagafell et/ou la fissure existante s’étendre en raison d’une augmentation soudaine de la coulée de lave qui pourrait être comparable à la phase initiale de la dernière éruption volcanique dans la région. Cela pourrait arriver avec très peu ou pas de préavis.
Il est également possible que le flux de magma de la chambre magmatique sous Svartsengi vers la série de cratères Sundhnúks augmente progressivement jusqu’à ce qu’il y ait un équilibre entre l’afflux de magma dans la chambre magmatique et l’écoulement vers la surface.
Il est également possible qu’il y ait une coulée de magma qui se terminera par de nouvelles fissures s’ouvrant ailleurs que dans la zone située entre Stóra-Skógfell et Hagafell. Ce scénario est considéré comme moins probable que les autres et s’accompagnerait d’une activité sismique considérable et de déformations plus précoces que les éruptions précédentes.

Image de la webcam de l’Agence météorologique norvégienne prise à 4h30 ce matin peu avant le lever du soleil. La caméra est située au sommet de Þorbirn et regarde vers le nord-est en direction du cratère.

Mercredi 24 avril, des experts de l’Agence météorologique norvégienne ont effectué des mesures des émissions de gaz provenant de l’éruption. Elle est estimée à 6-9 kg/s de SO2, mais lors de la dernière mesure effectuée il y a deux semaines, le 12 avril, l’émission de gaz a été estimée à 10-18 kg/s. Il n’y a aucune preuve qu’il tire des émissions de gaz de l’éruption. Pendant que l’éruption se poursuit, le flux de SO2 peut varier considérablement d’un jour à l’autre (comme l’ont montré les éruptions de Fagradalsfjall). Il existe toujours un risque de pollution par les gaz dans la zone autour du cratère ainsi que dans les agglomérations de la péninsule de Reykjanes, et nous conseillons aux habitants de la région de surveiller la qualité de l’air et de se renseigner sur la réaction à la pollution atmosphérique provoquée par l’éruption volcanique.

Source  : IMO

Photos : IMO , Hörður Kristleifsson.


Chili , Puyehue – Cordon Caulle :

Rapport spécial sur l’activité volcanique (REAV), région de Los Lagos, complexe volcanique Puyehue-Cordon Caulle , 26 Avril 2024, 16 h 00, heure locale (Chili continental).

Le Service National de Géologie et des Mines du Chili (Sernageomin) publie les informations PRÉLIMINAIRES suivantes, obtenues grâce à l’équipement de surveillance du Réseau National de Surveillance Volcanique (RNVV), traitées et analysées à l’Observatoire Volcanologique des Andes du Sud (Ovdas):

Selon les résultats obtenus à partir des stations GNSS installées sur le complexe volcanique et l’analyse des images satellites RADAR, il a été identifié une zone d’inflation active depuis l’année 2012 , dont le maximum est localisé approximativement à 6 km à l’Ouest-Nord-Ouest du centre d’émission associé à l’éruption de 2011. Durant les premiers mois d’l’année , il a été observé une augmentation de la vitesse d’élévation verticale accumulée ,atteignant depuis 42 cm , calculée à la station GNSS située à 3 km de la zone d’inflation maximale .

De plus , depuis le milieu de l’année 2020 on enregistre une augmentation de l’occurrence de la sismicité de type volcano-tectonique (VT) et hybride(HB) , de forte magnitude (ML>3.0) , laquelle est principalement associée à une source superficielle localisée près du centre éruptif de 2011. Ceci en relation avec d’autres type de sismicité volcanique, spécialement associée avec la dynamique des fluides magmatiques ou hydrothermaux à l’intérieur des conduits volcaniques , tout en gardant des niveaux bas , tant en quantité qu’en énergie.

Il faut mentionner que , bien que les paramètres de surveillance ne suggèrent pas une déstabilisation du système volcanique , la zone à proximité du point d’émission de l’éruption de 2011 présente des émanations de gaz et des zones superficielles qui enregistrent des températures proches de 90°C , conséquence de la présence d’un corps magmatique rémanent de la dernière éruption.

En résumé , compte tenu de la haute valeur de déformation observée , qui pourrait être en relation avecune surpression du système , le niveau d’alerte technique est élevé préventivement au niveau JAUNE.

Source et photo : Sernageomin.


Italie , Campi Flegrei :

Les Campi Flegrei sont la plus grande caldeira urbanisée active au cœur du continent européen. Depuis 2005, elle est affectée par le phénomène bradysismique qui provoque des soulèvements de sol, des tremblements de terre et des émissions de fumerolles.
La caldeira est surveillée par un système de surveillance multiparamétrique continu. Toutes les données fournies par ce système, pour le moment, ne montrent pas de preuve de l’imminence d’une éruption volcanique, et encore moins de grandes proportions (Bulletins de surveillance des volcans de Campanie).
Les actions d’atténuation des risques volcaniques reposent sur le partage d’informations correctes sur l’état du volcan. Le partage peut prendre de nombreuses formes, comme la publication de données et de bulletins sur des sites Internet institutionnels, des réunions scolaires, des rencontres avec la population exposée au risque, des séminaires, des conférences, des formations pour journalistes, etc. Le large spectre de ces activités est pratiqué en permanence par notre Institut (on se souvient de la dernière rencontre avec la population phlégréenne le 11 avril dernier).

Face à cet engagement, ce que l’on observe dans certains articles de presse relançant un documentaire de la télévision suisse sur les effets catastrophiques d’une future éruption aux Campi Flegrei est donc dissonant. Il s’agit d’informations qui ne sont pas basées sur des données et qui ignorent complètement toutes les activités scientifiques et de planification importantes qui ont vu, et voient encore, les scientifiques et la protection civile travailler côte à côte pour gérer au mieux le risque volcanique et ses conséquences , leurs connaissances et le risque d’une des régions les plus anthropisées au monde.

Depuis 2012, des études d’aléas permettent de définir les scénarios d’occurrence éruptive les plus probables sur la zone. Et même si le scénario avec la plus forte probabilité d’occurrence est celui d’une petite éruption (comme cela s’est produit pour l’éruption du Monte Nuovo de 1538), comme scénario de référence pour l’évaluation des zones potentiellement exposées à différents phénomènes lors d’une future éruption, celle relative à la phase la plus intense d’une éruption de moyenne échelle (comme celle survenue à Astroni il y a 4000 ans) a été choisie . Sur ce scénario, un plan d’urgence a été défini et les zones exposées à différents types de dangers ont été identifiées (flux pyroclastiques pour la zone rouge, chutes de cendres pour la zone jaune).
L’une des caractéristiques de la caldeira phlégréenne, et des caldeiras en général, est la difficulté d’établir a priori la zone dans laquelle s’ouvrira un évent éruptif, ce qui pourrait conduire à une plus grande incertitude dans l’identification des zones potentiellement exposées à des phénomènes dangereux. Pour pallier ce problème, les zones sujettes à l’impact des coulées pyroclastiques et des chutes de cendres ont été identifiées en considérant toutes les positions possibles d’un nouvel évent éruptif.


La probabilité que la prochaine éruption soit du type Campanien Ignimbrite/Napolitan Yellow Tuff est très faible . De plus, pour que ces éruptions à très grande échelle se produisent, une énorme quantité de magma doit pénétrer dans le système. Cela générerait des signaux macroscopiques qui n’échapperaient ni à notre système de surveillance ni aux habitants de la zone. Il suffit de dire qu’avant la dernière époque d’activité, au cours de laquelle 27 éruptions explosives se sont produites avec un volume total de magma émis de moins de 3 km3, la zone entre Monte Nuovo et Pietra a augmenté d’environ 50 m.
Au cours des deux éruptions les plus dévastatrices (Ignimbrite Campana et Napolitan Yellow Tuff), des dizaines à des centaines de kilomètres cubes de magma ont été émises en un seul événement.

Comment ces phénomènes pourraient-ils se produire sans précurseurs importants et inaperçus ?

Source :Carlo Doglioni (Président de l’INGV), Francesca Bianco (Directrice du Département Volcans de l’INGV), Mauro A. Di Vito (Directeur de l’Observatoire Vésuvien de l’INGV)

Lire l’article en entierhttps://www.ingv.it/stampa-e-urp/stampa/comunicati-stampa/5556-campi-flegrei-l-ingv-chiarisce-rischio-eruttivo-e-pericolosita?utm_content=buffer52073&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer&fbclid=IwZXh0bgNhZW0CMTAAAR1P1WzJ1Rgl9sFPbphlAqgyvWmd_qXu7ZLe8MqjgUPXg6f7VaKg-S4OBw0_aem_AThazw5o2_8Cs97uoMETTXitdQV4bwOQ1m_iIPo-q9cM49BuLsi0yg7jX6nRZRQKhLEPHf1o_y7pi2bTqWiHHM21

Photos : INGV , Stanley-goodspeed.


Guatemala , Santiaguito :

Conditions atmosphériques : Temps clair.
Vent : Sud-Est.
Précipitations : 3,4 mm.

L’Observatoire du Volcan Santiaguito rapporte une activité dans le dôme Caliente, avec un faible dégazage continu, soulevant des colonnes de vapeur d’eau et d’autres gaz magmatiques à des hauteurs de 300 mètres au-dessus du dôme, que le vent se déplace vers l’Ouest et le Sud-Ouest. Pendant la nuit et tôt le matin, des explosions ont été observées et entendues même à El Nuevo Palmar, ainsi que l’incandescence continue dans la coupole et sur ses flancs en raison de l’extrusion constante de lave en blocs. Des explosions faibles et modérées se produisent à raison de 1 à 3 par heure, accompagnées de faibles grondements et de bruits de dégazage, soulevant des colonnes de vapeur d’eau et de cendres à des hauteurs de 700 mètres au-dessus du dôme .

Elles provoquent la descente de coulées pyroclastiques sur de courtes distances, principalement vers les flancs Sud-Ouest, Sud et Sud-Est du dôme Caliente, en empilant le matériau dans des promontoires sur les flancs susmentionnés. Le vent souffle vers l’Ouest et le Sud-Ouest, de sorte qu’il peut y avoir de faibles chutes de cendres dans la région de San Marcos Palajunoj, Finca Pauwlonias et dans les environs. Dans l’après-midi et le soir, les pluies annoncées pourraient provoquer la descente de lahars dans différents canaux du volcan. L’activité reste à un niveau élevé, il est donc possible qu’avec les explosions ou sous l’effet de la gravité, une partie du matériau accumulé s’effondre et que des coulées pyroclastiques sur de longues distances soient générées vers le Sud-Ouest, le Sud et le Sud-Est.

Source : Insivumeh.

Photo : Edgar Cabrera / CONRED