03 Février 2022.

 

Ile de Montserrat , Soufrière Hills :

Le MVO a publié une déclaration sur Soufrière Hills le 28 janvier expliquant les tendances globales observées dans les données de surveillance depuis la fin de l’extrusion de lave en 2010. Ils ont noté que bien que l’activité sur le volcan ait été faible lorsqu’elle était analysée sur une base hebdomadaire, des tendances subtiles ont émergé. dans les données de ces derniers mois qui indiquent une augmentation globale mais faible des troubles. Le nombre de tremblements de terre de type volcano-tectoniques était faible, en moyenne un par jour depuis la fin de la dernière éruption, bien qu’entre 2018 et 2021, la moyenne soit passée de 0,4 à 1,2 par jour.

Les températures fumeroliennes qui ont initialement montré une tendance au refroidissement de 2013 à 2017 ont commencé à augmenter en 2018. L’augmentation a été la plus notable dans une fumerolle spécifique qui a connu une augmentation de température de 200 à 500 degrés Celsius; la température élevée était similaire à celles enregistrées pour la dernière fois en 2013. Le flux de dioxyde de soufre gazeux en 2020-2021 était en moyenne de 100 à 200 tonnes par jour supérieur aux flux enregistrés en 2018-2019, bien qu’il soit resté inférieur aux niveaux de 2012-2013. L’inflation lente de toute l’île s’est poursuivie depuis 2010, sans changement des schémas de déformation; les changements associés aux essaims de séismes de type volcano-tectoniques n’ont été observés que dans les zones proches du dôme. Une augmentation de l’activité des chutes de pierres a également été notée. Le MVO a réitéré que ces changements depuis 2018 environ étaient mineurs et ne méritaient pas une augmentation du niveau de danger, qui est resté à 1 (sur une échelle de 1 à 5).

Le volcan complexe, principalement andésitique, de Soufrière Hills occupe la moitié Sud de l’île de Montserrat. La zone du sommet consiste principalement en une série de dômes de lave mis en place le long d’une zone orientée Est-Sud-Est. Le volcan est flanqué de complexes datant du pléistocènes au Nord et au Sud. Le cratère English, un cratère de 1 km de large percé largement à l’Est par l’effondrement de l’édifice, s’est formé il y a environ 2000 ans à la suite du plus jeune de plusieurs événements d’effondrement produisant des dépôts de débris sous-marins et d’avalanches.

Les écoulements de blocs et de cendres et les dépôts de surtension associés à la croissance du dôme prédominent dans les dépôts de flanc, y compris ceux d’une éruption qui a probablement précédé la colonisation de l’île en 1632 CE, permettant la culture sur des terres récemment déboisées à proximité du sommet. Des essaims sismiques non éruptifs se sont produits à des intervalles de 30 ans au 20e siècle, mais aucune éruption historique n’a été enregistrée jusqu’en 1995. Les éruptions de cendres petites à modérées à long terme commençant cette année-là ont ensuite été accompagnées d’une croissance de dômes de lave et de coulées pyroclastiques. qui a forcé l’évacuation de la moitié Sud de l’île et a finalement détruit la capitale de Plymouth, provoquant des perturbations sociales et économiques majeures.

Source : GVP.

Photos : MVO / Dustin Van Aarde , MVO.

 

Italie , Vulcano :

BULLETIN HEBDOMADAIRE , du 24 Janvier 2022 au 30 Janvier 2022. (date d’émission 01 Février 2022)

SOMMAIRE DE L’ÉTAT DE L’ACTIVITÉ

À la lumière des données de surveillance, il est mis en évidence :

1) Température des fumerolles du cratère : Les températures enregistrées sur le bord du cratère montrent une forte variabilité liée aux phénomènes atmosphériques, alors que du côté interne elles continuent à rester stables.
2) Flux de CO2 dans la zone du cratère : Le flux de CO2 dans la zone du cratère reste sur des valeurs élevées.
3) Flux de SO2 dans la zone du cratère : Une mise à jour n’est pas disponible, les valeurs de la période précédente placent le flux de SO2 à un niveau élevé
4) Géochimie des gaz fumeroliens : Aucune mise à jour n’est disponible.
5) Flux de CO2 à la base du cône de La Fossa et dans la zone de Vulcano Porto : Les flux de CO2 à la base du cratère restent à des valeurs moyennes-élevées à l’exception du site de Faraglione, où les valeurs près du niveau de fond sont enregistrées.

6) Géochimie des aquifères thermiques : Les paramètres physico-chimiques enregistrés dans les puits Camping Sicilia et Bambara restent stables.
7) Sismicité locale : Nombre de micro-secousses faibles, VLP décroissant.
8) Sismicité régionale : Sismicité régionale essentiellement absente.
9) Déformations – GNSS : Le réseau de surveillance GNSS n’a pas montré de changements significatifs au cours de la semaine précédente.
10) Déformations – Inclinométrie : Le réseau inclinométrique ne montre pas de variations significatives.
11) Autres observations : Mobile GNSS : Les stations mobiles GNSS ne semblent pas présenter de variations significatives au cours de la période considérée.
GB-RAR : Les résultats de la surveillance GB-RAR se référant à la période 14 décembre 2021 – 31 janvier 2022, montrent une stabilité générale de la zone, avec des déformations le long de la LOS inférieures à 1 mm.
Gravimétrie : Au cours de la période considérée, les stations de mesures de gravimétrie en continu n’ont pas enregistré de changements significatifs

TEMPÉRATURE DES FUMEROLES DU CRATERE :
Dans la semaine en cours, les fumerolles du pourtour sommital ont présenté une tendance fortement perturbée par les phénomènes atmosphériques. La diminution des températures sur le bord correspond à des événements pluvieux. Les températures relevées côté intérieur restent stables, à 114°C.

FLUX DE CO2 À LA BASE DU CÔNE DE LA FOSSA ET DANS LA RÉGION DE VULCANO PORTO
Les flux de CO2 du sol, acquis automatiquement par le réseau VULCANOGAS, ont montré aujourd’hui une légère augmentation sur les sites Camping Sicilia et Rimessa, probablement liée à une modulation de la pression atmosphérique. Les valeurs restent à des niveaux élevés, quoique inférieurs à ceux atteints au plus fort de la crise. Sur le site de Faraglione, les valeurs sont comparables à celles relevées la semaine précédente.

Source : INGV.

Lire l’article https://www.ct.ingv.it/index.php/monitoraggio-e-sorveglianza/prodotti-del-monitoraggio/bollettini-settimanali-multidisciplinari/594-bollettino-settimanale-sul-monitoraggio-vulcanico-geochimico-e-sismico-del-vulcano-Vulcano-del-2022-02-01/file

Photos : INGV.

 

Philippines , Taal :

BULLETIN D’ACTIVITE DU VOLCAN TAAL , 03 Février 2022 , 08:00 :

Au cours des dernières 24 heures, le réseau de capteurs du volcan Taal a enregistré cent cinquante-deux (152) tremblements de terre volcaniques, dont trente-trois (33) événements de tremor volcanique d’une durée d’une (1) à deux (2) minutes, cent quatorze (114) tremblements de terre volcaniques à basse fréquence, cinq (5) événements hybrides et un tremor de fond de faible intensité qui persiste depuis le 7 juillet 2021.

Une émission phréato-magmatique de courte durée a été enregistrée à 15 h 55 hier, qui a duré 2 minutes basé sur l’enregistrement sismique. Cet événement a produit un panache de 300 mètres de haut qui a dérivé vers le Sud-Ouest. L’activité du cratère principal a été dominée par la remontée de fluides volcaniques chauds depuis le lac qui a généré des panaches de 900 mètres de haut qui ont dérivé vers le Sud-Sud-Ouest. Les émissions de dioxyde de soufre (SO2) étaient en moyenne de 7 902 tonnes / jour le 2 février 2022. Sur la base des paramètres de déformation du sol , des mesures d’inclinaison électronique, de la surveillance continue par GPS et InSAR, l’île du volcan Taal et la région du Taal ont commencé à se dégonfler en octobre 2021.

Source : Phivolcs .

Photo : Kyle Aranza

 

Chili , Lascar :

Le SERNAGEOMIN a signalé des augmentations mineures de l’activité de surface sur le Láscar. Une incandescence nocturne du cratère a commencé à être visible au moins depuis le 11 janvier. Au total, 14 anomalies thermiques ont été identifiées dans les données satellitaires du 13 au 28 janvier ; l’intensité des anomalies a augmenté le 17 janvier et a culminé le 22 janvier. Les émissions de gaz et de vapeur ont été plus fréquentes et plus robustes par rapport aux mois précédents, le panache le plus élevé s’élevant à plus de 1 km au-dessus du bord du cratère le 22 janvier. Des émissions de dioxyde de soufre ont été identifiées dans les données satellitaires les 8 et 17 janvier ; les instruments de la station EMU, à 6 km à l’Est-Sud-Est, ont enregistré des taux d’émission accrus du 17 au 19 janvier avec un pic moyen de 1 787 tonnes par jour le 18 janvier.

 

La sismicité était à des niveaux normaux dans l’ensemble du 12 au 28 janvier. De faibles nombres et magnitudes de tremblements de terre de type volcano-tectoniques (VT) et de longue période (LP) ont été enregistrés par le réseau sismique, bien que 27 événements VT de faible magnitude (M 1 ou moins) aient été enregistrés le 22 janvier. Les images satellites acquises le 26 janvier n’ont montré aucun changement morphologique récent au niveau du cratère ni de dépôts autour de la zone du cratère. Le niveau d’alerte est resté au vert (le niveau le plus bas sur une échelle de quatre couleurs).

Vue du Láscar (centre gauche), de l’Aguas Calientes (centre) et de l’Acamarachi (centre droit) depuis la Laguna Lejía.

Le Láscar est le volcan le plus actif des Andes chiliennes du Nord. Le stratovolcan de type andésitique / dacitique contient six cratères sommitaux qui se chevauchent. Des coulées de lave proéminentes descendent ses flancs Nord-Ouest. Un stratovolcan plus ancien et plus élevé à 5 km à l’Est, le Volcán Aguas Calientes, présente un cratère sommital bien développé et une probable coulée de lave holocène près de son sommet (de Silva et Francis, 1991). Le Láscar se compose de deux édifices majeurs; l’activité a commencé au niveau du volcan oriental, puis s’est déplacée vers le cône Ouest. La plus grande éruption a eu lieu il y a environ 26 500 ans, et après l’éruption de la coulée de scories de Tumbres il y a environ 9 000 ans, l’activité s’est déplacée vers l’édifice oriental, où trois cratères se chevauchant se sont formés. De fréquentes éruptions explosives petites à modérées ont été enregistrées depuis le milieu du XIXe siècle, ainsi que des éruptions périodiques plus importantes qui ont produit des chutes de cendres à des centaines de kilomètres. La plus grande éruption historique a eu lieu en 1993, produisant des coulées pyroclastiques à 8,5 km au Nord-Ouest du sommet et des chutes de cendres à Buenos Aires.

Source : GVP.

Photos : Sernageomin / Gabriel Orozco.  RudiR/ commons.wikimedia.org .

 

Japon , Sakurajima :

Le JMA a signalé que l’incandescence dans le cratère Minamidake (sur le volcan Sakurajima , dans la caldeira Aira ) était visible les nuit du 24 au 31 janvier. Deux explosions se sont produites le 28 janvier. L’un d’elles, enregistrée à 13 h 19, a produit un panache de cendres qui s’est élevé à 3,4 km au-dessus du bord du cratère et a éjecté des blocs atteignant une distance de 1,7 km. Des cendres sont tombées à Arimura (4,5 km au Sud-Est) et Kurokami (4 km à l’Est ). Le JMA a noté que jusqu’à cet événement, les panaches d’explosion n’avaient pas dépassé 3 km depuis le 5 avril 2021. Le niveau d’alerte est resté à 3 (sur une échelle de 5 niveaux) et les résidents ont été avertis de rester à 2 km du cratère.

La caldera Aira dans la moitié Nord de la baie de Kagoshima contient le volcan Sakurajima, l’un des plus actifs au Japon, après la caldera. L’éruption du volumineux flux pyroclastique d’Ito a accompagné la formation de la caldera de 17 x 23 km il y a environ 22 000 ans. La caldera plus petite de Wakamiko a été formée au début de l’Holocène dans le coin Nord-Est de la caldera d’Aira, avec plusieurs cônes post-caldera. La construction du Sakurajima a commencé il y a environ 13 000 ans sur le rebord Sud de la caldeira d’Aira et a construit une île qui a finalement été reliée à la péninsule d’Osumi lors de la grande éruption explosive et effusive de 1914. L’activité au sommet du cône de Kitadake s’est terminée il y a environ 4850 ans après quoi des éruptions ont eu lieu depuis le Minamidake. De fréquentes éruptions historiques, enregistrées depuis le VIIIe siècle, ont déposé des cendres sur Kagoshima, l’une des plus grandes villes de Kyushu, située dans la baie de Kagoshima, à seulement 8 km du sommet. La plus grande éruption historique a eu lieu entre 1471 et 1476.

Source : GVP.

Photo : VTL via Alicja Szojer

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *